Towards Robust SDRTV-to-HDRTV via Dual Inverse Degradation Network
Recently, the transformation of standard dynamic range TV (SDRTV) to high dynamic range TV (HDRTV) is in high demand due to the scarcity of HDRTV content. However, the conversion of SDRTV to HDRTV often amplifies the existing coding artifacts in SDRTV which deteriorate the visual quality of the output. In this study, we propose a dual inverse degradation SDRTV-to-HDRTV network DIDNet to address the issue of coding artifact restoration in converted HDRTV, which has not been previously studied. Specifically, we propose a temporal-spatial feature alignment module and dual modulation convolution to remove coding artifacts and enhance color restoration ability. Furthermore, a wavelet attention module is proposed to improve SDRTV features in the frequency domain. An auxiliary loss is introduced to decouple the learning process for effectively restoring from dual degradation. The proposed method outperforms the current state-of-the-art method in terms of quantitative results, visual quality, and inference times, thus enhancing the performance of the SDRTV-to-HDRTV method in real-world scenarios.
READ FULL TEXT