Transfer Reward Learning for Policy Gradient-Based Text Generation

09/09/2019
by   James O'Neill, et al.
6

Task-specific scores are often used to optimize for and evaluate the performance of conditional text generation systems. However, such scores are non-differentiable and cannot be used in the standard supervised learning paradigm. Hence, policy gradient methods are used since the gradient can be computed without requiring a differentiable objective. However, we argue that current n-gram overlap based measures that are used as rewards can be improved by using model-based rewards transferred from tasks that directly compare the similarity of sentence pairs. These reward models either output a score of sentence-level syntactic and semantic similarity between entire predicted and target sentences as the expected return, or for intermediate phrases as segmented accumulative rewards. We demonstrate that using a Transferable Reward Learner leads to improved results on semantical evaluation measures in policy-gradient models for image captioning tasks. Our InferSent actor-critic model improves over a BLEU trained actor-critic model on MSCOCO when evaluated on a Word Mover's Distance similarity measure by 6.97 points, also improving on a Sliding Window Cosine Similarity measure by 10.48 points. Similar performance improvements are also obtained on the smaller Flickr-30k dataset, demonstrating the general applicability of the proposed transfer learning method.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro