Transferable Positive/Negative Speech Emotion Recognition via Class-wise Adversarial Domain Adaptation

10/30/2018
by   Hao Zhou, et al.
0

Speech emotion recognition plays an important role in building more intelligent and human-like agents. Due to the difficulty of collecting speech emotional data, an increasingly popular solution is leveraging a related and rich source corpus to help address the target corpus. However, domain shift between the corpora poses a serious challenge, making domain shift adaptation difficult to function even on the recognition of positive/negative emotions. In this work, we propose class-wise adversarial domain adaptation to address this challenge by reducing the shift for all classes between different corpora. Experiments on the well-known corpora EMODB and Aibo demonstrate that our method is effective even when only a very limited number of target labeled examples are provided.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro