Unbiased MLMC-based variational Bayes for likelihood-free inference

09/27/2021
by   Zhijian He, et al.
0

Variational Bayes (VB) is a popular tool for Bayesian inference in statistical modeling. Recently, some VB algorithms are proposed to handle intractable likelihoods with applications such as approximate Bayesian computation. In this paper, we propose several unbiased estimators based on multilevel Monte Carlo (MLMC) for the gradient of Kullback-Leibler divergence between the posterior distribution and the variational distribution when the likelihood is intractable, but can be estimated unbiasedly. The new VB algorithm differs from the VB algorithms in the literature which usually render biased gradient estimators. Moreover, we incorporate randomized quasi-Monte Carlo (RQMC) sampling within the MLMC-based gradient estimators, which was known to provide a favorable rate of convergence in numerical integration. Theoretical guarantees for RQMC are provided in this new setting. Numerical experiments show that using RQMC in MLMC greatly speeds up the VB algorithm, and finds a better parameter value than some existing competitors do.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset