Unconditional Image-Text Pair Generation with Multimodal Cross Quantizer

04/15/2022
by   Hyungyung Lee, et al.
0

Though deep generative models have gained a lot of attention, most of the existing works are designed for the unimodal generation task. In this paper, we explore a new method for unconditional image-text pair generation. We propose MXQ-VAE, a vector quantization method for multimodal image-text representation. MXQ-VAE accepts a paired image and text as input, and learns a joint quantized representation space, so that the image-text pair can be converted to a sequence of unified indices. Then we can use autoregressive generative models to model the joint image-text representation, and even perform unconditional image-text pair generation. Extensive experimental results demonstrate that our approach effectively generates semantically consistent image-text pair and also enhances meaningful alignment between image and text.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro