Understanding System Characteristics of Online Erasure Coding on Scalable, Distributed and Large-Scale SSD Array Systems

09/14/2017
by   Sungjoon Koh, et al.
0

Large-scale systems with arrays of solid state disks (SSDs) have become increasingly common in many computing segments. To make such systems resilient, we can adopt erasure coding such as Reed-Solomon (RS) code as an alternative to replication because erasure coding can offer a significantly lower storage cost than replication. To understand the impact of using erasure coding on system performance and other system aspects such as CPU utilization and network traffic, we build a storage cluster consisting of approximately one hundred processor cores with more than fifty high-performance SSDs, and evaluate the cluster with a popular open-source distributed parallel file system, Ceph. Then we analyze behaviors of systems adopting erasure coding from the following five viewpoints, compared with those of systems using replication: (1) storage system I/O performance; (2) computing and software overheads; (3) I/O amplification; (4) network traffic among storage nodes; (5) the impact of physical data layout on performance of RS-coded SSD arrays. For all these analyses, we examine two representative RS configurations, which are used by Google and Facebook file systems, and compare them with triple replication that a typical parallel file system employs as a default fault tolerance mechanism. Lastly, we collect 54 block-level traces from the cluster and make them available for other researchers.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro