UNetGAN: A Robust Speech Enhancement Approach in Time Domain for Extremely Low Signal-to-noise Ratio Condition

10/29/2020
by   Xiang Hao, et al.
0

Speech enhancement at extremely low signal-to-noise ratio (SNR) condition is a very challenging problem and rarely investigated in previous works. This paper proposes a robust speech enhancement approach (UNetGAN) based on U-Net and generative adversarial learning to deal with this problem. This approach consists of a generator network and a discriminator network, which operate directly in the time domain. The generator network adopts a U-Net like structure and employs dilated convolution in the bottleneck of it. We evaluate the performance of the UNetGAN at low SNR conditions (up to -20dB) on the public benchmark. The result demonstrates that it significantly improves the speech quality and substantially outperforms the representative deep learning models, including SEGAN, cGAN fo SE, Bidirectional LSTM using phase-sensitive spectrum approximation cost function (PSA-BLSTM) and Wave-U-Net regarding Short-Time Objective Intelligibility (STOI) and Perceptual evaluation of speech quality (PESQ).

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro