Universal Approximation with Quadratic Deep Networks

07/31/2018
by   Fenglei Fan, et al.
4

Recently, deep learning has been playing a central role in machine learning research and applications. Since AlexNet, increasingly more advanced networks have achieved state-of-the-art performance in computer vision, speech recognition, language processing, game playing, medical imaging, and so on. In our previous studies, we proposed quadratic/second-order neurons and deep quadratic neural networks. In a quadratic neuron, the inner product of a vector of data and the corresponding weights in a conventional neuron is replaced with a quadratic function. The resultant second-order neuron enjoys an enhanced expressive capability over the conventional neuron. However, how quadratic neurons improve the expressing capability of a deep quadratic network has not been studied up to now, preferably in relation to that of a conventional neural network. In this paper, we ask three basic questions regarding the expressive capability of a quadratic network: (1) for the one-hidden-layer network structure, is there any function that a quadratic network can approximate much more efficiently than a conventional network? (2) for the same multi-layer network structure, is there any function that can be expressed by a quadratic network but cannot be expressed with conventional neurons in the same structure? (3) Does a quadratic network give a new insight into universal approximation? Our main contributions are the three theorems shedding light upon these three questions and demonstrating the merits of a quadratic network in terms of expressive efficiency, unique capability, and compact architecture respectively.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro