Unsupervised Adaptation of SPLDA

11/20/2015
by   Jesús Villalba, et al.
0

State-of-the-art speaker recognition relays on models that need a large amount of training data. This models are successful in tasks like NIST SRE because there is sufficient data available. However, in real applications, we usually do not have so much data and, in many cases, the speaker labels are unknown. We present a method to adapt a PLDA model from a domain with a large amount of labeled data to another with unlabeled data. We describe a generative model that produces both sets of data where the unknown labels are modeled like latent variables. We used variational Bayes to estimate the hidden variables. Here, we derive the equations for this model. This model has been used in the papers: "UNSUPERVISED ADAPTATION OF PLDA BY USING VARIATIONAL BAYES METHODS" publised at ICASSP 2014, "Unsupervised Training of PLDA with Variational Bayes" published at Iberspeech 2014, and "VARIATIONAL BAYESIAN PLDA FOR SPEAKER DIARIZATION IN THE MGB CHALLENGE" published at ASRU 2015.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset