Unweighted Stochastic Local Search can be Effective for Random CSP Benchmarks

11/27/2014
by   Christopher D. Rosin, et al.
0

We present ULSA, a novel stochastic local search algorithm for random binary constraint satisfaction problems (CSP). ULSA is many times faster than the prior state of the art on a widely-studied suite of random CSP benchmarks. Unlike the best previous methods for these benchmarks, ULSA is a simple unweighted method that does not require dynamic adaptation of weights or penalties. ULSA obtains new record best solutions satisfying 99 of 100 variables in the challenging frb100-40 benchmark instance.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro