Unwritten Languages Demand Attention Too! Word Discovery with Encoder-Decoder Models

09/17/2017
by   Marcely Zanon Boito, et al.
0

Word discovery is the task of extracting words from unsegmented text. In this paper we examine to what extent neural networks can be applied to this task in a realistic unwritten language scenario, where only small corpora and limited annotations are available. We investigate two scenarios: one with no supervision and another with limited supervision with access to the most frequent words. Obtained results show that it is possible to retrieve at least 27 machine translation system with only 5,157 sentences. This result is close to those obtained with a task-specific Bayesian nonparametric model. Moreover, our approach has the advantage of generating translation alignments, which could be used to create a bilingual lexicon. As a future perspective, this approach is also well suited to work directly from speech.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset