UserReg: A Simple but Strong Model for Rating Prediction

by   Haiyang Zhang, et al.

Collaborative filtering (CF) has achieved great success in the field of recommender systems. In recent years, many novel CF models, particularly those based on deep learning or graph techniques, have been proposed for a variety of recommendation tasks, such as rating prediction and item ranking. These newly published models usually demonstrate their performance in comparison to baselines or existing models in terms of accuracy improvements. However, others have pointed out that many newly proposed models are not as strong as expected and are outperformed by very simple baselines. This paper proposes a simple linear model based on Matrix Factorization (MF), called UserReg, which regularizes users' latent representations with explicit feedback information for rating prediction. We compare the effectiveness of UserReg with three linear CF models that are widely-used as baselines, and with a set of recently proposed complex models that are based on deep learning or graph techniques. Experimental results show that UserReg achieves overall better performance than the fine-tuned baselines considered and is highly competitive when compared with other recently proposed models. We conclude that UserReg can be used as a strong baseline for future CF research.


page 1

page 2

page 3

page 4

page 5


A Troubling Analysis of Reproducibility and Progress in Recommender Systems Research

The design of algorithms that generate personalized ranked item lists is...

Top-N Recommendation Algorithms: A Quest for the State-of-the-Art

Research on recommender systems algorithms, like other areas of applied ...

Latent Feature Based FM Model For Rating Prediction

Rating Prediction is a basic problem in Recommender System, and one of t...

Joint Neural Collaborative Filtering for Recommender Systems

We propose a J-NCF method for recommender systems. The J-NCF model appli...

On the Difficulty of Evaluating Baselines: A Study on Recommender Systems

Numerical evaluations with comparisons to baselines play a central role ...

KNNs of Semantic Encodings for Rating Prediction

This paper explores a novel application of textual semantic similarity t...

Semi-supervised Learning Meets Factorization: Learning to Recommend with Chain Graph Model

Recently latent factor model (LFM) has been drawing much attention in re...

Please sign up or login with your details

Forgot password? Click here to reset