Using Machine Learning to Develop a Novel COVID-19 Vulnerability Index (C19VI)
COVID19 is now one of the most leading causes of death in the United States. Systemic health, social and economic disparities have put the minorities and economically poor communities at a higher risk than others. There is an immediate requirement to develop a reliable measure of county-level vulnerabilities that can capture the heterogeneity of both vulnerable communities and the COVID19 pandemic. This study reports a COVID19 Vulnerability Index (C19VI) for identification and mapping of vulnerable counties in the United States. We proposed a Random Forest machine learning based COVID19 vulnerability model using CDC sociodemographic and COVID19-specific themes. An innovative COVID19 Impact Assessment algorithm was also developed using homogeneity and trend assessment technique for evaluating severity of the pandemic in all counties and train RF model. Developed C19VI was statistically validated and compared with the CDC COVID19 Community Vulnerability Index (CCVI). Finally, using C19VI along with census data, we explored racial inequalities and economic disparities in COVID19 health outcomes amongst different regions in the United States. Our C19VI index indicates that 18.30 24.34 Furthermore, C19VI reveals that 75.57 economically poor communities are very high or high COVID19 vulnerable regions. The proposed approach of vulnerability modeling takes advantage of both the well-established field of statistical analysis and the fast-evolving domain of machine learning. C19VI provides an accurate and more reliable way to measure county level vulnerability in the United States. This index aims at helping emergency planners to develop more effective mitigation strategies especially for the disproportionately impacted communities.
READ FULL TEXT