Variance function estimation in high-dimensions

05/21/2012
by   Mladen Kolar, et al.
0

We consider the high-dimensional heteroscedastic regression model, where the mean and the log variance are modeled as a linear combination of input variables. Existing literature on high-dimensional linear regres- sion models has largely ignored non-constant error variances, even though they commonly occur in a variety of applications ranging from biostatis- tics to finance. In this paper we study a class of non-convex penalized pseudolikelihood estimators for both the mean and variance parameters. We show that the Heteroscedastic Iterative Penalized Pseudolikelihood Optimizer (HIPPO) achieves the oracle property, that is, we prove that the rates of convergence are the same as if the true model was known. We demonstrate numerical properties of the procedure on a simulation study and real world data.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset