Variational Inference with Tail-adaptive f-Divergence

10/29/2018
by   Dilin Wang, et al.
0

Variational inference with α-divergences has been widely used in modern probabilistic machine learning. Compared to Kullback-Leibler (KL) divergence, a major advantage of using α-divergences (with positive α values) is their mass-covering property. However, estimating and optimizing α-divergences require to use importance sampling, which could have extremely large or infinite variances due to heavy tails of importance weights. In this paper, we propose a new class of tail-adaptive f-divergences that adaptively change the convex function f with the tail of the importance weights, in a way that theoretically guarantees finite moments, while simultaneously achieving mass-covering properties. We test our methods on Bayesian neural networks, as well as deep reinforcement learning in which our method is applied to improve a recent soft actor-critic (SAC) algorithm. Our results show that our approach yields significant advantages compared with existing methods based on classical KL and α-divergences.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset