Watermarking Images in Self-Supervised Latent Spaces

12/17/2021
by   Pierre Fernandez, et al.
0

We revisit watermarking techniques based on pre-trained deep networks, in the light of self-supervised approaches. We present a way to embed both marks and binary messages into their latent spaces, leveraging data augmentation at marking time. Our method can operate at any resolution and creates watermarks robust to a broad range of transformations (rotations, crops, JPEG, contrast, etc). It significantly outperforms the previous zero-bit methods, and its performance on multi-bit watermarking is on par with state-of-the-art encoder-decoder architectures trained end-to-end for watermarking. Our implementation and models will be made publicly available.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset