Weak convergence rates for a full implicit scheme of stochastic Cahn-Hilliard equation with additive noise
The aim of this study is the weak convergence rate of a temporal and spatial discretization scheme for stochastic Cahn-Hilliard equation with additive noise, where the spectral Galerkin method is used in space and the backward Euler scheme is used in time. The presence of the unbounded operator in front of the nonlinear term and the lack of the associated Kolmogorov equations make the error analysis much more challenging and demanding. To overcome these difficulties, we further exploit a novel approach proposed in [7] and combine it with Malliavin calculus to obtain an improved weak rate of convergence, in comparison with the corresponding strong convergence rates. The techniques used here are quite general and hence have the potential to be applied to other non-Markovian equations. As a byproduct the rate of the strong error can also be easily obtained.
READ FULL TEXT