ZeroMat: Solving Cold-start Problem of Recommender System with No Input Data

12/06/2021
by   Hao Wang, et al.
0

Recommender system is an applicable technique in most E-commerce commercial product technical designs. However, nearly all recommender system faces a challenge called the cold-start problem. The problem is so notorious that almost every industrial practitioner needs to resolve this issue when building recommender systems. Most cold-start problem solvers need some kind of data input as the starter of the system. On the other hand, many real-world applications place popular items or random items as recommendation results. In this paper, we propose a new technique called ZeroMat that requries no input data at all and predicts the user item rating data that is competitive in Mean Absolute Error and fairness metric compared with the classic matrix factorization with affluent data, and much better performance than random placement.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro