A boosted outlier detection method based on the spectrum of the Laplacian matrix of a graph

08/07/2020
by   Nicolas Cofre, et al.
0

This paper explores a new outlier detection algorithm based on the spectrum of the Laplacian matrix of a graph. Taking advantage of boosting together with sparse-data based learners. The sparcity of the Laplacian matrix significantly decreases the computational burden, enabling a spectrum based outlier detection method to be applied to larger datasets compared to spectral clustering. The method is competitive on synthetic datasets with commonly used outlier detection algorithms like Isolation Forest and Local Outlier Factor.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro