A Decision Making Approach for Chemotherapy Planning based on Evolutionary Processing
The problem of chemotherapy treatment optimization can be defined in order to minimize the size of the tumor without endangering the patient's health; therefore, chemotherapy requires to achieve a number of objectives, simultaneously. For this reason, the optimization problem turns to a multi-objective problem. In this paper, a multi-objective meta-heuristic method is provided for cancer chemotherapy with the aim of balancing between two objectives: the amount of toxicity and the number of cancerous cells. The proposed method uses mathematical models in order to measure the drug concentration, tumor growth and the amount of toxicity. This method utilizes a Multi-Objective Particle Swarm Optimization (MOPSO) algorithm to optimize cancer chemotherapy plan using cell-cycle specific drugs. The proposed method can be a good model for personalized medicine as it returns a set of solutions as output that have balanced between different objectives and provided the possibility to choose the most appropriate therapeutic plan based on some information about the status of the patient. Experimental results confirm that the proposed method is able to explore the search space efficiently in order to find out the suitable treatment plan with minimal side effects. This main objective is provided using a desirable designing of chemotherapy drugs and controlling the injection dose. Moreover, results show that the proposed method achieve to a better therapeutic performance compared to a more recent similar method [1].
READ FULL TEXT