A Survey of Knowledge Representation and Retrieval for Learning in Service Robotics

07/05/2018
by   David Paulius, et al.
0

Within the realm of service robotics, researchers have placed a great amount of effort into learning motions and manipulations for task execution by robots. The task of robot learning is very broad, as it involves many tasks such as object detection, action recognition, motion planning, localization, knowledge representation and retrieval, and the intertwining of computer vision and machine learning techniques. In this paper, we focus on how knowledge can be gathered, represented, and reproduced to solve problems as done by researchers in the past decades. We discuss the problems which have existed in robot learning and the solutions, technologies or developments (if any) which have contributed to solving them. Specifically, we look at three broad categories involved in task representation and retrieval for robotics: 1) activity recognition from demonstrations, 2) scene understanding and interpretation, and 3) task representation in robotics - datasets and networks. Within each section, we discuss major breakthroughs and how their methods address present issues in robot learning and manipulation.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset