A weak law of large numbers for realised covariation in a Hilbert space setting
This article generalises the concept of realised covariation to Hilbert-space-valued stochastic processes. More precisely, based on high-frequency functional data, we construct an estimator of the trace-class operator-valued integrated volatility process arising in general mild solutions of Hilbert space-valued stochastic evolution equations in the sense of Da Prato and Zabczyk (2014). We prove a weak law of large numbers for this estimator, where the convergence is uniform on compacts in probability with respect to the Hilbert-Schmidt norm. In addition, we show that the conditions on the volatility process are valid for most common stochastic volatility models in Hilbert spaces.
READ FULL TEXT