Algorithmic clothing: hybrid recommendation, from street-style-to-shop
In this paper we detail Cortexica's (https://www.cortexica.com) recommendation framework -- particularly, we describe how a hybrid visual recommender system can be created by combining conditional random fields for segmentation and deep neural networks for object localisation and feature representation. The recommendation system that is built after localisation, segmentation and classification has two properties -- first, it is knowledge based in the sense that it learns pairwise preference/occurrence matrix by utilising knowledge from experts (images from fashion blogs) and second, it is content-based as it utilises a deep learning based framework for learning feature representation. Such a construct is especially useful when there is a scarcity of user preference data, that forms the foundation of many collaborative recommendation algorithms.
READ FULL TEXT