An Algorithmic Inference Approach to Learn Copulas

10/07/2019
by   Bruno Apolloni, et al.
0

We introduce a new method for estimating the parameter of the bivariate Clayton copulas within the framework of Algorithmic Inference. The method consists of a variant of the standard boot-strapping procedure for inferring random parameters, which we expressly devise to bypass the two pitfalls of this specific instance: the non independence of the Kendall statistics, customarily at the basis of this inference task, and the absence of a sufficient statistic w.r.t. α. The variant is rooted on a numerical procedure in order to find the α estimate at a fixed point of an iterative routine. Although paired with the customary complexity of the program which computes them, numerical results show an outperforming accuracy of the estimates.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro