An Efficient Minibatch Acceptance Test for Metropolis-Hastings

10/19/2016
by   Daniel Seita, et al.
0

We present a novel Metropolis-Hastings method for large datasets that uses small expected-size minibatches of data. Previous work on reducing the cost of Metropolis-Hastings tests yield variable data consumed per sample, with only constant factor reductions versus using the full dataset for each sample. Here we present a method that can be tuned to provide arbitrarily small batch sizes, by adjusting either proposal step size or temperature. Our test uses the noise-tolerant Barker acceptance test with a novel additive correction variable. The resulting test has similar cost to a normal SGD update. Our experiments demonstrate several order-of-magnitude speedups over previous work.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset