An Empirical Investigation of Multi-bridge Multilingual NMT models

10/14/2021
by   Anoop Kunchukuttan, et al.
0

In this paper, we present an extensive investigation of multi-bridge, many-to-many multilingual NMT models (MB-M2M) ie., models trained on non-English language pairs in addition to English-centric language pairs. In addition to validating previous work which shows that MB-M2M models can overcome zeroshot translation problems, our analysis reveals the following results about multibridge models: (1) it is possible to extract a reasonable amount of parallel corpora between non-English languages for low-resource languages (2) with limited non-English centric data, MB-M2M models are competitive with or outperform pivot models, (3) MB-M2M models can outperform English-Any models and perform at par with Any-English models, so a single multilingual NMT system can serve all translation directions.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro