Analysis of a chaotic spiking neural model: The NDS neuron
Further analysis and experimentation is carried out in this paper for a chaotic dynamic model, viz. the Nonlinear Dynamic State neuron (NDS). The analysis and experimentations are performed to further understand the underlying dynamics of the model and enhance it as well. Chaos provides many interesting properties that can be exploited to achieve computational tasks. Such properties are sensitivity to initial conditions, space filling, control and synchronization.Chaos might play an important role in information processing tasks in human brain as suggested by biologists. If artificial neural networks (ANNs) is equipped with chaos then it will enrich the dynamic behaviours of such networks. The NDS model has some limitations and can be overcome in different ways. In this paper different approaches are followed to push the boundaries of the NDS model in order to enhance it. One way is to study the effects of scaling the parameters of the chaotic equations of the NDS model and study the resulted dynamics. Another way is to study the method that is used in discretization of the original Rössler that the NDS model is based on. These approaches have revealed some facts about the NDS attractor and suggest why such a model can be stabilized to large number of unstable periodic orbits (UPOs) which might correspond to memories in phase space.
READ FULL TEXT