Analysis of Network Lasso For Semi-Supervised Regression

08/22/2018
by   Alexander Jung, et al.
12

We characterize the statistical properties of network Lasso for semi-supervised regression problems involving network- structured data. This characterization is based on the con- nectivity properties of the empirical graph which encodes the similarities between individual data points. Loosely speaking, network Lasso is accurate if the available label informa- tion is well connected with the boundaries between clusters of the network-structure datasets. We make this property precise using the notion of network flows. In particular, the existence of a sufficiently large network flow over the empirical graph implies a network compatibility condition which, in turn, en- sures accuracy of network Lasso.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro