Artificial chemistry experiments with chemlambda, lambda calculus, interaction combinators

03/31/2020
by   Marius Buliga, et al.
0

Given a graph rewrite system, a graph G is a quine graph if it has a non-void maximal collection of non-conflicting matches of left patterns of graphs rewrites, such that after the parallel application of the rewrites we obtain a graph isomorphic with G. Such graphs exhibit a metabolism, they can multiply or they can die, when reduced by a random rewriting algorithm. These are introductory notes to the pages of artificial chemistry experiments with chemlambda, lambda calculus or interaction combinators, available from the entry page https://chemlambda.github.io/index.html . The experiments are bundled into pages, all of them based on a library of programs, on a database which contains hundreds of graphs and on a database of about 150 pages of text comments and a collection of more than 200 animations, most of them which can be re-done live, via the programs. There are links to public repositories of other contributors to these experiments, with versions of these programs in python, haskell, awk or javascript.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset