Artificial Neural Networks in Fluid Dynamics: A Novel Approach to the Navier-Stokes Equations

08/19/2018
by   Megan McCracken, et al.
0

Neural networks have been used to solve different types of large data related problems in many different fields.This project takes a novel approach to solving the Navier-Stokes Equations for turbulence by training a neural network using Bayesian Cluster and SOM neighbor weighting to map ionospheric velocity fields based on 3-dimensional inputs. Parameters used in this problem included the velocity, Reynolds number, Prandtl number, and temperature. In this project data was obtained from Johns-Hopkins University to train the neural network using MATLAB. The neural network was able to map the velocity fields within a sixty-seven percent accuracy of the validation data used. Further studies will focus on higher accuracy and solving further non-linear differential equations using convolutional neural networks.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro