β-VAEs can retain label information even at high compression

12/06/2018
by   Emily Fertig, et al.
0

In this paper, we investigate the degree to which the encoding of a β-VAE captures label information across multiple architectures on Binary Static MNIST and Omniglot. Even though they are trained in a completely unsupervised manner, we demonstrate that a β-VAE can retain a large amount of label information, even when asked to learn a highly compressed representation.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset