Blind SAR Image Despeckling Using Self-Supervised Dense Dilated Convolutional Neural Network
Despeckling is a key and indispensable step in SAR image preprocessing, existing deep learning-based methods achieve SAR despeckling by learning some mappings between speckled (different looks) and clean images. However, there exist no clean SAR image in the real world. To this end, in this paper, we propose a self-supervised dense dilated convolutional neural network (BDSS) for blind SAR image despeckling. Proposed BDSS can still learn to suppress speckle noise without clean ground truth by optimized for L2 loss. Besides, three enhanced dense blocks with dilated convolution are employed to improve network performance. The synthetic and real-data experiments demonstrate that proposed BDSS can achieve despeckling effectively while maintaining well features such as edges, point targets, and radiometric. At last, we demonstrate that our proposed BDSS can achieve blind despeckling excellently, i.e., do not need to care about the number of looks.
READ FULL TEXT