Blind Speech Separation and Dereverberation using Neural Beamforming

03/24/2021
by   Lukas Pfeifenberger, et al.
0

In this paper, we present the Blind Speech Separation and Dereverberation (BSSD) network, which performs simultaneous speaker separation, dereverberation and speaker identification in a single neural network. Speaker separation is guided by a set of predefined spatial cues. Dereverberation is performed by using neural beamforming, and speaker identification is aided by embedding vectors and triplet mining. We introduce a frequency-domain model which uses complex-valued neural networks, and a time-domain variant which performs beamforming in latent space. Further, we propose a block-online mode to process longer audio recordings, as they occur in meeting scenarios. We evaluate our system in terms of Scale Independent Signal to Distortion Ratio (SI-SDR), Word Error Rate (WER) and Equal Error Rate (EER).

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset