CEQE: Contextualized Embeddings for Query Expansion

03/09/2021
by   Shahrzad Naseri, et al.
0

In this work we leverage recent advances in context-sensitive language models to improve the task of query expansion. Contextualized word representation models, such as ELMo and BERT, are rapidly replacing static embedding models. We propose a new model, Contextualized Embeddings for Query Expansion (CEQE), that utilizes query-focused contextualized embedding vectors. We study the behavior of contextual representations generated for query expansion in ad-hoc document retrieval. We conduct our experiments on probabilistic retrieval models as well as in combination with neural ranking models. We evaluate CEQE on two standard TREC collections: Robust and Deep Learning. We find that CEQE outperforms static embedding-based expansion methods on multiple collections (by up to 18 improves over proven probabilistic pseudo-relevance feedback (PRF) models. We further find that multiple passes of expansion and reranking result in continued gains in effectiveness with CEQE-based approaches outperforming other approaches. The final model incorporating neural and CEQE-based expansion score achieves gains of up to 5 state-of-the-art transformer-based re-ranking model, Birch.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset