Closed-Form Expressions for Global and Local Interpretation of Tsetlin Machines with Applications to Explaining High-Dimensional Data
Tsetlin Machines (TMs) capture patterns using conjunctive clauses in propositional logic, thus facilitating interpretation. However, recent TM-based approaches mainly rely on inspecting the full range of clauses individually. Such inspection does not necessarily scale to complex prediction problems that require a large number of clauses. In this paper, we propose closed-form expressions for understanding why a TM model makes a specific prediction (local interpretability). Additionally, the expressions capture the most important features of the model overall (global interpretability). We further introduce expressions for measuring the importance of feature value ranges for continuous features. The expressions are formulated directly from the conjunctive clauses of the TM, making it possible to capture the role of features in real-time, also during the learning process as the model evolves. Additionally, from the closed-form expressions, we derive a novel data clustering algorithm for visualizing high-dimensional data in three dimensions. Finally, we compare our proposed approach against SHAP and state-of-the-art interpretable machine learning techniques. For both classification and regression, our evaluation show correspondence with SHAP as well as competitive prediction accuracy in comparison with XGBoost, Explainable Boosting Machines, and Neural Additive Models.
READ FULL TEXT