Contact-timing and Trajectory Optimization for 3D Jumping on Quadruped Robots
Performing highly agile acrobatic motions with a long flight phase requires perfect timing, high accuracy, and coordination of the whole body motion. To address these challenges, this paper presents a unified timing and trajectory optimization framework for legged robots performing aggressive 3D jumping. In our approach, we firstly utilize an effective optimization framework using simplified rigid body dynamics to solve for contact timings and a reference trajectory of the robot body. The solution of this module is then used to formulate a whole-body trajectory optimization based on the full nonlinear dynamics of the robot. This combination allows us to effectively optimize for contact timings while guaranteeing the accuracy of the jumping trajectory that can be realized in the hardware. We validate the efficiency of the proposed framework on the A1 robot model for various 3D jumping tasks such as double-backflips and double barrel roll off the high altitude of 2m and 0.8m respectively. Experimental validation was also successfully conducted for different 3D jumping motions such as barrel roll from a box or diagonal jumps.
READ FULL TEXT