Correction of AI systems by linear discriminants: Probabilistic foundations
Artificial Intelligence (AI) systems sometimes make errors and will make errors in the future, from time to time. These errors are usually unexpected, and can lead to dramatic consequences. Intensive development of AI and its practical applications makes the problem of errors more important. Total re-engineering of the systems can create new errors and is not always possible due to the resources involved. The important challenge is to develop fast methods to correct errors without damaging existing skills. We formulated the technical requirements to the 'ideal' correctors. Such correctors include binary classifiers, which separate the situations with high risk of errors from the situations where the AI systems work properly. Surprisingly, for essentially high-dimensional data such methods are possible: simple linear Fisher discriminant can separate the situations with errors from correctly solved tasks even for exponentially large samples. The paper presents the probabilistic basis for fast non-destructive correction of AI systems. A series of new stochastic separation theorems is proven. These theorems provide new instruments for fast non-iterative correction of errors of legacy AI systems. The new approaches become efficient in high-dimensions, for correction of high-dimensional systems in high-dimensional world (i.e. for processing of essentially high-dimensional data by large systems).
READ FULL TEXT