Cross-Lingual Vision-Language Navigation

10/24/2019
by   An Yan, et al.
0

Vision-Language Navigation (VLN) is the task where an agent is commanded to navigate in photo-realistic environments with natural language instructions. Previous research on VLN is primarily conducted on the Room-to-Room (R2R) dataset with only English instructions. The ultimate goal of VLN, however, is to serve people speaking arbitrary languages. To do this, we collect a cross-lingual R2R dataset, extending the original benchmark with corresponding Chinese instructions. But it is impractical to collect human-annotated instructions for every existing language. Based on the newly introduced dataset, we propose a general cross-lingual VLN framework to enable instruction-following navigation for different languages. We first explore the possibility of building a cross-lingual agent when no training data of the target language is available. The cross-lingual agent is equipped with a meta-learner to aggregate cross-lingual representations and with a visually grounded cross-lingual alignment module to align textual representations of different languages. Under the zero-shot learning scenario, our model shows competitive results even compared to a model trained with all target language instructions. Besides, we introduce an adversarial domain adaption loss to improve the transferring ability of our model when given a certain amount of target language data. Our dataset and methods demonstrate potentials of building scalable cross-lingual agents to serve speakers with different languages.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro