Deep Convolutional GANs for Car Image Generation

06/24/2020
by   Dong Hui Kim, et al.
0

In this paper, we investigate the application of deep convolutional GANs on car image generation. We improve upon the commonly used DCGAN architecture by implementing Wasserstein loss to decrease mode collapse and introducing dropout at the end of the discrimiantor to introduce stochasticity. Furthermore, we introduce convolutional layers at the end of the generator to improve expressiveness and smooth noise. All of these improvements upon the DCGAN architecture comprise our proposal of the novel BoolGAN architecture, which is able to decrease the FID from 195.922 (baseline) to 165.966.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro