Deep reinforcement learning reveals fewer sensors are needed for autonomous gust alleviation

04/06/2023
by   Kevin PT. Haughn, et al.
0

There is a growing need for uncrewed aerial vehicles (UAVs) to operate in cities. However, the uneven urban landscape and complex street systems cause large-scale wind gusts that challenge the safe and effective operation of UAVs. Current gust alleviation methods rely on traditional control surfaces and computationally expensive modeling to select a control action, leading to a slower response. Here, we used deep reinforcement learning to create an autonomous gust alleviation controller for a camber-morphing wing. This method reduced gust impact by 84 Notably, we found that gust alleviation using signals from only three pressure taps was statistically indistinguishable from using six signals. This reduced-sensor fly-by-feel control opens the door to UAV missions in previously inoperable locations.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset