DeepVS: An Efficient and Generic Approach for Source Code Modeling Usage

10/15/2019
by   Yasir Hussain, et al.
27

Recently deep learning-based approaches have shown great potential in the modeling of source code for various software engineering tasks. These techniques lack adequate generalization and resistance to acclimate the use of such models in a real-world software development environment. In this work, we propose a novel general framework that combines cloud computing and deep learning in an integrated development environment (IDE) to assist software developers in various source code modeling tasks. Additionally, we present DeepVS, an end-to-end deep learning-based source code suggestion tool that shows a real-world implementation of our proposed framework. The DeepVS tool is capable of providing source code suggestions instantly in an IDE by using a pre-trained source code model. Moreover, the DeepVS tool is also capable of suggesting zero-day (unseen) code tokens. The DeepVS tool illustrates the effectiveness of the proposed framework and shows how it can help to link the gap between developers and researchers.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset