Derived Codebooks for High-Accuracy Nearest Neighbor Search

05/16/2019
by   Fabien André, et al.
12

High-dimensional Nearest Neighbor (NN) search is central in multimedia search systems. Product Quantization (PQ) is a widespread NN search technique which has a high performance and good scalability. PQ compresses high-dimensional vectors into compact codes thanks to a combination of quantizers. Large databases can, therefore, be stored entirely in RAM, enabling fast responses to NN queries. In almost all cases, PQ uses 8-bit quantizers as they offer low response times. In this paper, we advocate the use of 16-bit quantizers. Compared to 8-bit quantizers, 16-bit quantizers boost accuracy but they increase response time by a factor of 3 to 10. We propose a novel approach that allows 16-bit quantizers to offer the same response time as 8-bit quantizers, while still providing a boost of accuracy. Our approach builds on two key ideas: (i) the construction of derived codebooks that allow a fast and approximate distance evaluation, and (ii) a two-pass NN search procedure which builds a candidate set using the derived codebooks, and then refines it using 16-bit quantizers. On 1 billion SIFT vectors, with an inverted index, our approach offers a Recall@100 of 0.85 in 5.2 ms. By contrast, 16-bit quantizers alone offer a Recall@100 of 0.85 in 39 ms, and 8-bit quantizers a Recall@100 of 0.82 in 3.8 ms.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro