Detecting Parkinson's Disease from interactions with a search engine: Is expert knowledge sufficient?
Parkinson's disease (PD) is a slowly progressing neurodegenerative disease with early manifestation of motor signs. Recently, there has been a growing interest in developing automatic tools that can assess motor function in PD patients. Here we show that mouse tracking data collected during people's interaction with a search engine can be used to distinguish PD patients from similar, non-diseased users and present a methodology developed for the diagnosis of PD from these data. A main challenge we address is the extraction of informative features from raw mouse tracking data. We do so in two complementary ways: First, we manually construct expert-recommended informative features, aiming to identify abnormalities in motor behaviors. Second, we use an unsupervised representation learning technique to map these raw data to high-level features. Using all the extracted features, a Random Forest classifier is then used to distinguish PD patients from controls, achieving an AUC of 0.92, while results using only expert-generated or auto-generated features are 0.87 and 0.83, respectively. Our results indicate that mouse tracking data can help in detecting users at early stages of the disease, and that both expert-generated features and unsupervised techniques for feature generation are required to achieve the best possible performance
READ FULL TEXT