Device Directedness with Contextual Cues for Spoken Dialog Systems

11/23/2022
by   Dhanush Bekal, et al.
0

In this work, we define barge-in verification as a supervised learning task where audio-only information is used to classify user spoken dialogue into true and false barge-ins. Following the success of pre-trained models, we use low-level speech representations from a self-supervised representation learning model for our downstream classification task. Further, we propose a novel technique to infuse lexical information directly into speech representations to improve the domain-specific language information implicitly learned during pre-training. Experiments conducted on spoken dialog data show that our proposed model trained to validate barge-in entirely from speech representations is faster by 38 improvement over a baseline LSTM model that uses both audio and Automatic Speech Recognition (ASR) 1-best hypotheses. On top of this, our best proposed model with lexically infused representations along with contextual features provides a further relative improvement of 5.7 faster than the baseline.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro