Distance-Based Sound Separation
We propose the novel task of distance-based sound separation, where sounds are separated based only on their distance from a single microphone. In the context of assisted listening devices, proximity provides a simple criterion for sound selection in noisy environments that would allow the user to focus on sounds relevant to a local conversation. We demonstrate the feasibility of this approach by training a neural network to separate near sounds from far sounds in single channel synthetic reverberant mixtures, relative to a threshold distance defining the boundary between near and far. With a single nearby speaker and four distant speakers, the model improves scale-invariant signal to noise ratio by 4.4 dB for near sounds and 6.8 dB for far sounds.
READ FULL TEXT