Distributed Joint Power and Rate Control for NOMA/OFDMA in 5G and Beyond
In this paper, we study the problem of minimizing the uplink aggregate transmit power subject to the users' minimum data rate and peak power constraint on each sub-channel for multi-cell wireless networks. To address this problem, a distributed sub-optimal joint power and rate control algorithm called JPRC is proposed, which is applicable to both non-orthogonal frequency-division multiple access (NOMA) and orthogonal frequency-division multiple access (OFDMA) schemes. Employing JPRC, each user updates its transmit power using only local information. Simulation results illustrate that the JPRC algorithm can reach a performance close to that obtained by the optimal solution via exhaustive search, with the NOMA scheme achieving a 59% improvement on the aggregate transmit power over the OFDMA counterpart. It is also shown that the JPRC algorithm can outperform existing distributed power control algorithms.
READ FULL TEXT