Distribution System Voltage Control under Uncertainties
Voltage control plays an important role in the operation of electricity distribution networks, especially with high penetration of distributed energy resources. These resources introduces significant and fast varying uncertainties. In this paper, we focus on reactive power compensation to control voltage in the presence of uncertainties. We adopt a probabilistic approach that accounts for arbitrary correlations between renewable resources at each of the buses and we use the linearized DistFlow equations to model the distribution network. We then show that this optimization problem is convex for a wide variety of probabilistic distributions. Compared to conventional per-bus chance constraints, our formulation is more robust to uncertainty and more computationally tractable. We illustrate the results using standard IEEE distribution test feeders.
READ FULL TEXT