Effective Distant Supervision for Temporal Relation Extraction

10/24/2020
by   Xinyu Zhao, et al.
0

A principal barrier to training temporal relation extraction models in new domains is the lack of varied, high quality examples and the challenge of collecting more. We present a method of automatically collecting distantly-supervised examples of temporal relations. We scrape and automatically label event pairs where the temporal relations are made explicit in text, then mask out those explicit cues, forcing a model trained on this data to learn other signals. We demonstrate that a pre-trained Transformer model is able to transfer from the weakly labeled examples to human-annotated benchmarks in both zero-shot and few-shot settings, and that the masking scheme is important in improving generalization.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro