Effective Domain Knowledge Transfer with Soft Fine-tuning

09/05/2019
by   Zhichen Zhao, et al.
0

Convolutional neural networks require numerous data for training. Considering the difficulties in data collection and labeling in some specific tasks, existing approaches generally use models pre-trained on a large source domain (e.g. ImageNet), and then fine-tune them on these tasks. However, the datasets from source domain are simply discarded in the fine-tuning process. We argue that the source datasets could be better utilized and benefit fine-tuning. This paper firstly introduces the concept of general discrimination to describe ability of a network to distinguish untrained patterns, and then experimentally demonstrates that general discrimination could potentially enhance the total discrimination ability on target domain. Furthermore, we propose a novel and light-weighted method, namely soft fine-tuning. Unlike traditional fine-tuning which directly replaces optimization objective by a loss function on the target domain, soft fine-tuning effectively keeps general discrimination by holding the previous loss and removes it softly. By doing so, soft fine-tuning improves the robustness of the network to data bias, and meanwhile accelerates the convergence. We evaluate our approach on several visual recognition tasks. Extensive experimental results support that soft fine-tuning provides consistent improvement on all evaluated tasks, and outperforms the state-of-the-art significantly. Codes will be made available to the public.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset