Effective Multi-Query Expansions: Collaborative Deep Networks for Robust Landmark Retrieval

01/18/2017
by   Yang Wang, et al.
0

Given a query photo issued by a user (q-user), the landmark retrieval is to return a set of photos with their landmarks similar to those of the query, while the existing studies on the landmark retrieval focus on exploiting geometries of landmarks for similarity matches between candidate photos and a query photo. We observe that the same landmarks provided by different users over social media community may convey different geometry information depending on the viewpoints and/or angles, and may subsequently yield very different results. In fact, dealing with the landmarks with caused by the photography of q-users is often nontrivial and has seldom been studied. In this paper we propose a novel framework, namely multi-query expansions, to retrieve semantically robust landmarks by two steps. Firstly, we identify the top-k photos regarding the latent topics of a query landmark to construct multi-query set so as to remedy its possible . For this purpose, we significantly extend the techniques of Latent Dirichlet Allocation. Then, motivated by the typical collaborative filtering methods, we propose to learn a collaborative deep networks based semantically, nonlinear and high-level features over the latent factor for landmark photo as the training set, which is formed by matrix factorization over collaborative user-photo matrix regarding the multi-query set. The learned deep network is further applied to generate the features for all the other photos, meanwhile resulting into a compact multi-query set within such space. Extensive experiments are conducted on real-world social media data with both landmark photos together with their user information to show the superior performance over the existing methods.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset